

MSAG Metal Standard Aerosol Generation

IAS Inc.

MSAG is an indispensable tool for nano-particle analysis and direct gas analysis such as laser ablation (LA) and Gas Exchange Device (GED) by ICP-MS.

Features

- High precision syringe pump can introduce metal standard solution at a 1 µL/ min to a nebulizer and a 100% of solution is introduced to the plasma of ICP-MS. As a result, the absolute amount of each element, e.g. ag/sec and atoms/ sec, introduced to the plasma can be calculated. As a result, analysis of standard nano-particle such as Au is not required.
- ICP-MS signal detected, e.g. counts/sec, from the standard solution above gives the sensitivity of each element in ag/count.
- Transient signal analysis of ICP-MS can detects particles, which gives absolute amount of each element in ag, which can calculate diameter of one particle.
- Concentration of metallic impurities in gases in ng/kg or ng/m³ can be calculated as well as the particle size distribution of each element.
- Metal free structure for all contact parts with standard solution.

MSAG for nano particle analysis in solution.

Calibration Curve by MSAG

- A 10 ng/mL mixed metal standard solution was directly introduced to a nebulizer from 0 to 3 μL/min by means of MSAG.
- MSGG (Metal Standard Gas Generation) unit was also used to monitor variation of ICP-MS sensitivity, and Mo gaseous standard was used as an internal standard.
- Linear calibration curves with internal standard correction were obtained below 3 µL/min.
- Three different nebulizer was checked with a 1 µL/min flow rate, and reproducible results were obtained, which indicated that a 100% of standard solution introduced to the nebulizer was introduced to the plasma of ICP-MS.
- When the standard solution was introduced over 3 µL/min, the sensitivity started decreasing, which indicated that some portion of standard solution was trapped in a spray chamber.

	MSAG			MSGG		
	51V	208Pb	238U	52Cr	95Mo	182W
Nebulizer 1	35,278	378,438	798,065	111,615	45,460	88,481
Nebulizer 2	36,077	391,145	829,978	111,389	44,435	88,354
Nebulizer 3	35,732	393,829	833,304	110,553	44,054	86,670
SD	401	8,221	19,456	559	727	1,011
Average	35,695	387,804	820,449	111,186	44,650	87,835
RSD (%)	1.12	2.12	2.37	0.50	1.63	1.15

Counts in Y axis is compensated intensity with Mo internal standard based on the count obtained at 1 uL/min uptake rate .

Metal particle analysis in NH₃ gas by GED

- ♦ Many particles of Cu and Zn were detected in a high purity NH₃ gas by GED-ICP-MS.
- The concentration of Cu and Zn was calculated aqueous standard solution 0.48 and 0.07 ng/kg, respectively.
- One particle with 5 counts signal was equivalent to 30 and 36 nm particle size of pure Cu and Zn, respectively.

Specifications

Model	: MSAG
Flow range	: 0.10 ~ 3.00 µL/min
Syringe	:Glass 500 μL
Nebulizer	: High efficiency concentric
Spray chambe	er: Glass

Environment & Utilities Room temperature : $15 \sim 30^{\circ}$ C Humidity : $35 \sim 85^{\circ}$ RH no condensation Power : $100 \sim 240$ VAC $\pm 10\%$ 2 A, Single phase, 50/60 Hz Size : $166(W) \times 295(D) \times 630(H)$ mm Weight : 9 kg

IAS Inc.

2-2-1 Hinohonmachi, Hino, Tokyo, 191-0011 Japan TEL: +81-42-589-5525 E-Mail: iasjapan@iasinc.jp URL: https://iasinc.jp